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1. Introduction

The connection between Yang-Mills and string theories was reconsidered in [1] using the

twistor approach [2] (see [3] for an earlier study). It was originally noticed that a class

of perturbative tree amplitudes for the gauge fields of N = 4 supersymmetric Yang-Mills

theories were reproduced from a string moving in the projective CP
(3|4) superspace. CP

(3|4)

is a Calabi-Yau supermanifold, the bosonic body of which, CP
3, is Penrose twistor space [2].

The class of Yang-Mills amplitudes that may be described by the twistor string model

[1] was then extended in [4, 5]. In particular, one loop amplitudes are also amenable to

a twistor presentation using a technique [5 – 7] suggested by the twistor string approach.

This further supports the original idea of the existence of a deep connection between

the supertwistor string and N = 4 super-Yang-Mills gauge theories in the usual D = 4
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(super)spacetime. The restrictions on a possible full identification of these models come

from the impossibility of isolating the closed string sector of the twistor string from the

open one, and from the observation that the closed string sector, in view of its confor-

mal invariance, should lead to conformal supergravity [8], which has itself problems for

its physical treatment. Recently [9], a twistor string-like generating functional for super-

Yang-Mills amplitudes was derived from a twistor reformulation of the super-Yang-Mills

action which, in turn, followed from its ‘asymmetric’ formulation [10]. An analogous for-

mulation for gravity that might be related with the closed twistor string was considered

in [11].

At the same time, alternative twistor string models were proposed in [12, 13] and [14].

It was argued in [13] that the twistor string might be related with the N = 2 spinning

string, which has N = 2 extended worldvolume supersymmetry and is defined in a D = 4

spacetime with two time-like directions (see [15] for further discussion). The problem of

relating the twistor string with two-time physics was considered in [16] where possible

higher dimensional generalizations were also discussed.

To look for a (super)spacetime formulation of the twistor string that originally had

been given only in terms of supertwistor variables but not in the usual spacetime or su-

perspace coordinates, Siegel proposed a new twistor string action [14] in terms of the

Atiyah-Drinfel’d-Hitchin-Manin (ADHM) [17] (super)twistors (see [18]).

One of the messages of this paper is that the standard (not ADHM) twistor superstring

action, at least the closed string chiral version of Siegel [14], can be rewritten in terms of

superspace coordinates in a different manner using a method similar to the change of vari-

ables that relates the different forms of the Ferber-Shirafuji superparticle action [19] (see

also [20]). The spacetime/superspace action that is classically equivalent to the twistor

superstring [14] has 8 κ-symmetries and turns out to be a straightforward N = 4 general-

ization of the D = 4 tensionless superstring action in [21, 22].

A similar twistor transform of the Berkovits model for the open twistor string results

in an action formulated in terms of two copies of the coordinate functions of D = 4, N = 4

superspace. We notice in passing that such a set of variables, albeit for N = 1, was used

in [23] to write an equivalent form of the N = 2 Green-Schwarz superstring action.

The way of quantizing the twistor string discussed in [1, 12, 14, 8] makes it clear that

this string should be understood as the tensionless limit of a tensionful string model. The

reason is that in the case of the intrinsically tensionless superstring (‘null-superstring’)

its conformal invariance is maintained by a continuous mass spectrum [24, 21], while the

tensionless limit of a tensionful string rather contains a set of massless fields [25 – 27]. The

relation of such a tensionful model with the so-called QCD string [28] was discussed in [14],

but in a purely bosonic context. The correspondence with the null-superstring of [21, 22]

makes transparent that the N=1 (N=2) counterparts of the twistor string action appear

in the tensionless limit of the standard N = 1 (N = 2) Green-Schwarz superstring models

in D=4. The search for a tensionful parent action for the standard (super-Yang-Mills

related) N=4 twistor string will lead us naturally to enlarge the D = 4, N = 4 Σ(4|4N)

superspace to the D = 10, N = 1 superspace Σ(10|16) or to a tensorial superspace Σ̃(4+6|16)

with additional antisymmetric tensor coordinates.
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2. Supertwistor string models

2.1 Siegel’s closed string action

To our knowledge, there are at present four versions of the supertwistor string action, that

of Witten [1], a constrained sigma model the tangent superspace of which is CP
(3|4), the

one put forward by Berkovits [12] involving two supertwistors, and the two proposed by

Siegel in [14].

The simplest action is that of the closed twistor string model of the first part of

ref. [14] (we do not discuss here the second, ADHM twistor action given in [14], which

includes explicitly the spacetime coordinates and that in this sense ‘untwists’ the twistor

superstring). It is given by

S =

∫

W 2

e++ ∧ ῩΣ ∇ΥΣ + d2ξLG

=

∫
d2ξ [

√
|γ(ξ)| ῩΣ(ξ)∇−−ΥΣ(ξ) + LG] , (2.1)

where e±± = dξme±±
m (ξ) are the worldsheet zweibein one-forms and e++ ∧ e−− = d2ξ

√
|γ|

is the invariant surface element of the worldsheet W 2. The basic worldsheet fields

ΥΣ = (µα̇ , λα ; ηi) = ΥΣ(ξ) , (2.2)

α = 1, 2 , α̇ = 1, 2 , i = 1, 2, 3, 4 ,

determine the (N = 4) Ferber supertwistor [19] ΥΣ and1

ῩΣ :=
(
ΥΠ

)∗
ΩΠΣ = (λ̄α̇ , −µ̄α ; 2iη̄i) , (2.3)

α = 1, 2 , α̇ = 1, 2 , i = 1, 2, 3, 4

is defined through the SU(2, 2|4)-invariant tensor

ΩΣΠ =




0 −δα̇
β̇ 0

δα
β 0 0

0 0 2i


 . (2.4)

Finally,

∇ = e++∇++ + e−−∇−− = d − iB (2.5)

is the worldsheet covariant derivative with the U(1)-connection B. In (2.1), LG is the action

for the worldsheet fields that are used to construct the Yang-Mills symmetry current (one

can use e.g., the worldsheet fermionic degrees of freedom, as discussed below).

The target supermanifold CP
(3|4) of the N = 4 supertwistors (2.2), which generalize

the Penrose twistors [2], defines a fundamental representation of the SU(2, 2|4) superconfor-

mal group (SU(2, 2) ∼ SO(2, 4)). Thus, the action (3.1) is superconformally (SU(2, 2|4)-)

1Following [1] we use the convention of adding a bar to all the spinors in ῩΣ rather than associating

the bar to the dotted ones (e.g., by denoting (λα , µ̄α̇) the two Weyl spinors in ΥΣ that make up a Dirac

spinor).
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invariant by construction. Such an action can be also written for N 6= 4 supertwistors; in

this case it possesses SU(2, 2|N) superconformal symmetry, but CP
(d|N) is a Calabi-Yau

manifold only if d + 1 = N . The set of special properties of the N = 4 case includes the

existence of the holomorphic integral measure on CP
(3|4),

Ω(3|4) = Ω(3|0) εijkl
∂

∂ηi

∂
∂ηj

∂
∂ηk

∂
∂ηl

,

Ω(3|0) = εα′β′γ′δ′Υ
α′

dΥβ′
∧ dΥγ′

∧ dΥδ′ , (2.6)

where α′ = 1, . . . , 4 (= 1, 2, 1̇, 2̇) . The Ω(3|4) integral form is invariant under the U(1)-phase

transformations of the twistors,

ΥΣ 7→ eiβΥΣ , ῩΣ 7→ e−iβῩΣ, (2.7)

and also under the scaling

ΥΣ 7→ eβ′
ΥΣ . (2.8)

These two transformations are also symmetries of the action (2.1) provided the scaling of

the twistors, eq. (2.8), is supplemented by the scaling of the vielbein form

e++ 7→ e−2β′
e++ . (2.9)

Because of the covariant derivative (2.5), the U(1) gauge transformations (2.7) (now

with local parameter β(ξ) under which B 7→ B + dβ) are a gauge symmetry of the ac-

tion (2.1). On the other hand, the rôle of this U(1) connection B is analogous (as noted

in [14]) to that of the auxiliary worldsheet metric in the standard superstring model.

Namely, its equations of motion impose on the supertwistor Υ the constraint

ῩΣ ΥΣ = λ̄α̇ µα̇ − µ̄αλα + 2iη̄iηi = 0 (2.10)

which, in the Hamiltonian framework, is the generator of the U(1) symmetry (2.7).

As the constraint (2.10) appears as a non-dynamical equation of motion for the auxil-

iary field B, one can consider the action

S =

∫
e++ ∧ ῩΣ dΥΣ + d2ξLG (2.11)

=

∫
e++ ∧ (λ̄α̇ dµα̇ − µ̄αdλα + 2iη̄idηi) + d2ξLG ,

where the supertwistor variables are constrained by (2.10), as an alternative to (2.1). In

this form the action does not contain the connection B, but the U(1) gauge symmetry still

holds due to the constraint (2.10). This constraint also makes the action (2.11) invariant

under the local worldsheet Lorentz SO(1, 1), which here is equivalent to the scaling or local

GL(1, R)) symmetry (2.8).2

2The worldsheet local Lorentz SO(1, 1) invariance of (2.1) for unconstrained supertwistors holds if B has

nontrivial SO(1, 1) transformation properties B 7→ B + idα, so that B is no longer a real connection (cf. [12,

14]). Both local symmetries can be maintained if B is taken to be a complex GL(1, C) connection. The

reality of the action with complex B would hold if (2.1) were written in the ‘symmetric’ form: ῩΣ ∇ΥΣ
7→

1
2
(ῩΣ ∇ΥΣ

− ∇ῩΣ ΥΣ). For the action (2.1) with a U(1) connection B this holds, up to boundary

contributions, provided that B∗
−− = B−− + i

2
e−−

m
∇++e++

m −
i
2
e++

m
∇−−e++

m (B++ does not enter the

action (2.1)).
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2.2 On the Yang-Mills current part of the action

The simplest choice for LG in (2.1) is the free fermion action which allows one to con-

struct the current J r = ψ̄JT rJ
I ψI for the Yang-Mills gauge group G (where T r J

I is the

matrix representation for its infinitesimal generators) and, hence, to describe the coupling

of the string to the Yang-Mills gauge field,
∫

trJA ∝
∫
J rAr, according to [29 – 31]. In

the action (2.1) for the closed string [14], these free fermions should have the same two-

dimensional (worldsheet) ‘chirality’ as the supertwistor variables [32]. Thus the Lagrangian

including the vertex operator reads

d2ξ [LG + tr(JA)] =
1

2
e++ ∧ (ψ̄IDψI − Dψ̄I ψI) ,

(2.12)

where D is the Yang-Mills covariant derivative DψI = dψI + AI
JψJ and ψ̄I = (ψJ )∗CJ∗I

with CJ∗I being invariant under the gauge group G; for instance CJ∗I = δJ∗I for G = U(m).

2.3 Berkovits’s open string action

Berkovits’s open string version of the twistor string [12] contains two supertwistor fields, a

left moving Υ−Σ and a right moving Υ+Σ,

Υ−Σ = (µ−α̇ , λ−
α ; η−i ) ,

Υ+Σ = (µ+α̇ , λ+
α ; η+

i ) . (2.13)

The worldsheet action reads

S =

∫

W 2

e++ ∧ Ῡ−
Σ∇(Υ−Σ) − e−− ∧ Ῡ+

Σ∇(Υ+Σ) +

+

∫

W 2

d2ξLG , (2.14)

where LG is the Lagrangian for the YM current (e.g. 1
2e++∧(ψ̄+IdψI

+−dψ̄+I ψI
+)+ 1

2e−−∧

(ψ̄−IdψI
− − dψ̄−I ψI

−) for the left and right fermionic fields ψ−, ψ+). The above notation

explains why the worldsheet supervielbein forms were denoted by e++ and e−−: the double

sign superscript indicates SO(1, 1)-vector transformation properties (e±± → e∓2β′
e±±),

while the single ± superscripts were reserved for supertwistors Υ±Σ to indicate their spinor

(Υ± → e∓β′
Υ±) transformation properties under the worldsheet Lorentz group.

The action (2.14) assumes boundary conditions that identify, in particular, the left

and the right supertwistors3 on the worldsurface boundary ∂W 2:

Υ−Σ|∂W 2 = Υ+Σ|∂W 2 , Ῡ−
Σ|∂W 2 = Ῡ+

Σ |∂W 2 , (2.15)

3In the original paper [12] Ῡ−
Σ , like in (2.14), is the canonically conjugate momentum of Υ−Σ but,

unlike in (2.14), it is not its complex conjugate; the complex conjugate of Υ−Σ is there identified with

Υ+Σ (Υ−Σ = Υ+Σ in [12]). We, however, take the point of view of [14, 16], in which, like in the standard

quantization of supertwistors [19], the canonically conjugate supertwistors basically coincide with their

complex conjugates.
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as well as the left and right currents. Siegel [14] motivated his modification (2.1) of the

Berkovits twistor string (2.14) by stating that the boundary conditions do not play any

rôle except that of halving the number of the twistor degrees of freedom. Specifically, the

identification (2.15) of the two supertwistors on the boundary ∂W 2 of W 2 allows one to

construct all the open string vertex operators using only one set of twistor variables, either

(Υ−Σ , Ῡ−
Σ) or (Υ+Σ , Ῡ+

Σ). It was also noticed that the closed string version is more natural

for a spacetime interpretation, which was constructed by moving from the Penrose-twistor

string to an alternative, ‘six dimensional’ ADHM-twistor string [14]. We will present here

another, more straightforward way to arrive at the spacetime or, more precisely, at the

standard superspace presentation.

2.4 Witten’s action

For completeness we describe here the original Witten’s proposal [1] for a CP
(3|4) twistor

string. It uses only one supertwistor and it is based on the following action

SW =

∫

W 2

[
∇ῩΣ ∧ ∗∇ΥΣ + d2ξ Ξ(ξ)

(
ῩΣΥΣ − r

)]
=

=

∫
e++ ∧ e−−

[
∇++ῩΣ ∇−−ΥΣ + ∇−−ῩΣ ∇++ΥΣ

]

+

∫
d2ξΞ(ξ)

(
ῩΣΥΣ − r

)
(2.16)

describing a CP
(3|4) sigma-model subject to the additional constraint

ῩΣΥΣ = r (2.17)

for some constant r, introduced into the action through the Lagrange multiplier Ξ(ξ). In

eq. (2.16), ∗ is the Hodge operator for the auxiliary worldsheet metric,

∗ e−− = e−− , ∗e++ = −e++ . (2.18)

In the case of particle mechanics [19] the modification of the twistor constraint (2.10)

by a nonvanishing r (eq. (2.17)) is known to describe a massless particle with helicity

s = r/2. On the other hand, it is also known that, due to the noncommutativity of ΥΣ and

ῩΣ in a quantum description, the classical constraint (2.10) can also lead after quantization

to (2.17) with a nonvanishing r.4

The covariant derivative ∇ in (2.16) contains the U(1)-gauge field B: ∇ΥΣ = dΥΣ −

iB ΥΣ, eq. (2.5). Due to the constraint (2.17), the equations of motion for the gauge field

B can be written as

0 = ῩΣ∇ΥΣ = ῩΣdΥΣ − iB ῩΣΥΣ

= dΥΣ ῩΣ − iB r . (2.19)

4In the case of particle mechanics, the quantization of r = 2s in units of ~ can easily be obtained as

the requirement that the wave function be well defined as a function of complex variable i.e., that under a

2π phase transformation of the bosonic spinor argument the phase of the wave function is shifted by krπ,

k ∈ Z. See references and discussion in [33].

For a two-twistor description of massive particles see [34] and references therein; a one-twistor description

has recently been developed in [35].
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Hence for a nonvanishing r the U(1)-gauge field may be expressed in terms of the super-

twistor and its conjugate,

B = −
i

r
ΥΣdΥΣ . (2.20)

In this case the Lagrange multiplier Ξ(ξ) is also expressed in terms of the twistor by the

solution

d2ξ Ξ = +
1

r
∇ΥΣ ∧ ∗∇ΥΣ (2.21)

of the supertwistors equations of motion

∇ ∗ ∇ΥΣ = d2ξ ΞΥΣ ,

∇ ∗ ∇ΥΣ = d2ξ ΞΥΣ . (2.22)

[To arrive at (2.21) one uses the constraint (2.17) and equations (2.19)]. Notice that

inserting (2.21) back into the equations of motion (2.22) one finds

∇ ∗ ∇ΥΣ = −
1

r
ΥΣ ∇ΥΠ ∧ ∗∇ΥΠ (2.23)

and its c.c. expression. The r.h.s. is proportional to the trace of the energy-momentum

tensor Tmn ∝ ∇mΥΠ ∇nΥΠ. This vanishes if the equation of motion for the auxiliary

worldvolume metric γmn = e++
(m e−−

n) is taken into account.

If r = 0, eq. (2.20) does no longer follow from (2.19) as B does not appear in (2.19).

Then, although the Lagrange multiplier Ξ is still present in the dynamical equations (2.22),

their contractions with ΥΣ and ΥΣ cannot be used to express Ξ in terms of the covariant

derivatives of supertwistors, like in (2.21), but it rather produces

ΥΣ∇ ∗ ∇ΥΣ = 0 , ∇ ∗ ∇ΥΣ ΥΣ = 0 . (2.24)

In the light of eq. (2.19), eqs. (2.24) imply

∇ΥΣ ∧ ∗∇ΥΣ = 0 for r = 0 . (2.25)

The existence of the invariant integral form (2.6) makes the N = 4 supertwistor space

CP
(3|4) a Calabi-Yau supermanifold; this is needed to relate the sigma model to the topolog-

ical ‘B-model’ [1]. To reproduce the MHV amplitudes of the Yang-Mills theory the twistor

string model based on eq. (2.16) has to be enriched by D-instanton contributions [1] (that

the Berkovits model seeks to avoid). We will not need nor consider these details below.

3. D = 4 N = 4 superspace formulation of the supertwistor string

3.1 Siegel’s closed supertwistor string model as a model in D = 4 N = 4 super-

space

We show here that the (non Yang-Mills part of) Siegel’s closed twistor string, e++∧ῩΣ∇ΥΣ

in eq. (2.1), has a transparent D = 4, N = 4 superspace form,

SS =

∫

W 2

[
e++ ∧ Π̂α̇αλ̄α̇λα + d2ξLG

]
, (3.1)

– 7 –
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where Π̂α̇α ≡ dξmΠα̇α
m ≡ dτΠα̇α

τ + dσΠα̇α
σ is the pull-back to the worldsheet W 2 of the flat

supervielbein on D = 4, N = 4 superspace,

Πα̇α := dxα̇α − idθα
i θ̄α̇i + iθα

i dθ̄α̇i , (3.2)

where i = 1, 2, 3, 4. Πα̇α can also be written in terms of a left or right chiral coordinate

basis,

Πα̇α := dxα̇α
L − 2idθα

i θ̄α̇i = dxαα̇
R + 2iθα

i dθ̄α̇i , (3.3)

xα̇α
L := xα̇α + iθα

i θ̄α̇i = (xα̇α
R )∗ , (3.4)

xα̇α
R := xα̇α − iθα

i θ̄α̇i = (xα̇α
L )∗ . (3.5)

The bosonic spinors λα, λ̄α̇ in (3.1) are auxiliary. Their equations of motion

e++ ∧ Πα̇αλα = 0 or Πα̇α
−−λα = 0 (3.6)

are non-dynamical and imply

Πα̇α
−− ∼ λ̄α̇λα , (3.7)

which solves the Virasoro constraint

Πα̇α
−−Π−−α̇α = 0 . (3.8)

It may be easily checked that the action (3.1) is equivalent to (2.1). Indeed, by using

Leibniz rule (dxα̇α λα = d(xα̇αλα) − xα̇αdλα, etc.) eq. (3.1) can be written in the form

S =

∫
e++ ∧

(
dµα̇ λ̄α̇ − dλα µ̄α − 2idηi η̄i

)
+ d2ξLG

=

∫
e++ ∧ d(ΥΣ) ῩΣ + d2ξLG , (3.9)

where the components of the supertwistor are related to the superspace coordinates by the

following supersymmetric generalization [19] of the Penrose incidence relation [2]

µα̇ = xα̇α
L λα := (xα̇α + iθα

i θ̄α̇i)λα , ηi = θα
i λα . (3.10)

Eqs. (3.10) give the general solution of the constraint ῩΣΥΣ = 0, which allows us to use

eq. (2.10) instead of (3.10).

3.2 κ-symmetry

The action (3.1), involving the superspace coordinate fields and the auxiliary bosonic spinor

fields λ(ξ), λ(ξ), is thus equivalent to the twistor action (3.9). Ignoring the Yang-Mills

current variables in LG and the auxiliary one-form e++, one sees that the superspace

action (3.1) contains, besides the auxiliary e++, 8 (4+4) real bosonic and 16 (4 × 4)

real fermionic variables, while the twistor one (3.9) contains instead 8 bosonic plus 8

(4× 2) fermionic supertwistor variables subject to one bosonic constraint, eq. (2.10). This

mismatch indicates the presence of one bosonic and eight fermionic gauge symmetries in

the superspace action (3.1).

– 8 –
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The action is invariant under reparametrization as well as under the scaling (2.9),

λ′ = λeβ′
(see eq. (2.8)). Besides, there is a bosonic gauge symmetry under the U(1) phase

transformations of the spinor field λα. This is the same gauge symmetry possessed by the

supertwistor action (3.9), there generated by the first class constraint (2.10). Let us now

show that the superspace action indeed possesses an 8-parametric fermionic κ-symmetry.

Varying the action (3.1) we find (mainly ignoring the Yang-Mills current part LG which

does not depend neither on supertwistors nor on the superspace coordinate functions)

δS =

∫

W 2

δe++ ∧

(
Π̂α̇αλ̄α̇λα +

δ(d2ξLG)

δe++

)

−

∫

W 2

d(e++λαλ̄α̇) (δx̂α̇α − iδθ̂α
i
ˆ̄θα̇i + iθ̂α

i δ ˆ̄θα̇i)

+

∫

W 2

e++ ∧ Π̂α̇α(λ̄α̇δλα + δλ̄α̇λα)

−2i

∫

W 2

e++ ∧
(
dθα

i λα δθ̄α̇i λ̄α̇ + dθ̄α̇i λ̄α̇ δθα
i λα

)
. (3.11)

The fact that only 8 (δθα
i λα and its c.c.) out of the 8+8 independent fermionic variations

(δθα
i and δθ̄α̇i = (δθα

i )∗, i = 1, 2, 3, 4) enter effectively in the action variation (3.11) shows

that the action (3.1) possess eight local fermionic κ-symmetries. Explicitly they read

δκxα̇α = iδκθα
i θ̄α̇i − iθα

i δκθ̄α̇i ,

δκθα
i = κiλ

α , δκθ̄α̇i = κ̄iλ̄α̇ , (3.12)

δκλα = δκλ̄α̇ = δκe++ = 0 .

The κ-symmetry transformations in the form (3.12) are clearly irreducible (see [36] for their

interpretation as worldline supersymmetry) in contrast with the standard κ-symmetry [37,

38] with

δκθα
i = κα̇iΠ

α̇α
−−

, δκθ̄α̇i = Πα̇α
−−κ̄i

α (3.13)

(Πα̇α
−−

:= ∇−−xα̇α − i∇−−θα
i θ̄α̇i + iθα

i ∇−− θ̄α̇i) .

Clearly, the irreducible transformations (3.12) can be obtained from the standard κ-

symmetry in its first order form by substituting λ̄α̇λα for Πα̇α
−−

with κi = κiα̇λ̄α̇. Equation

Πα̇α
−−

∝ λ̄α̇λα indeed holds on the mass shell for the dynamical system (3.1), see eq. (3.7).

3.3 The supertwistor string as a formulation of the tensionless string

The fact that the action (3.9) corresponds to a tensionless superstring was noticed in [14].

We have seen above that the twistor string action (3.9) is equivalent to the superspace

action (3.1) which includes the bosonic spinors λα as auxiliary variables. Our next ob-

servation is that the action (3.1) is simply the null-superstring action of [21, 22]. In-

deed, although that action was written in terms of D = 4 Lorentz harmonic variables

(v−α , v+
α ) ∈ SL(2, C) = Spin(1, 3), and (3.1) contains instead one bosonic spinor λα, the sec-

ond harmonic v+
α was not involved in the null-superstring action of [21, 22]. Furthermore,

the only constraint that is imposed on these D = 4 spinorial harmonics [33] is

vα−v+
α = 1 . (3.14)
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If this is considered as a condition on v+
α , then v−α is just an arbitrary but nonvanish-

ing bosonic spinor and can be identified with λα. Then, with λα = v−α , and defining a

worldsheet density ρ++m by e++ ∧ d := d2ξ ρ++m∂m, one can write the action (3.1) in the

form

S =
∫
W 2 d2ξ ρ++mΠα̇α

m v̄−α̇ v−α ≡
∫
W 2 e++ ∧ Πα̇αv̄−α̇ v−α , (3.15)

which is exactly the ‘twistor-like’ tensionless superstring action in [21, 22].

3.4 Berkovits supertwistor open string model and the open tensionless super-

string in an enlarged superspace

The above observations indicate that Berkovits open string version of the twistor string

model should correspond to the open null-string. We show now that this open tensionless

superstring can be defined on the direct product of two N = 4 superspaces.5

Let us consider the left and right moving supertwistors already restricted by the con-

straints

Ῡ−
ΣΥ−Σ ≡ λ̄−

α̇ µ−α̇ − µ̄−αλ−
α − 2iη−i η̄−i = 0 , (3.16)

Ῡ+
ΣΥ+Σ ≡ λ̄+

α̇ µ+α̇ − µ̄+αλ+
α − 2iη+

i η̄+i = 0 . (3.17)

Then the connection B = e++B++ + e−−B−− (which in the original formulation of

eq. (2.14) [12] reproduces the above two constraints as the Euler-Lagrange equations for

B−− and B++) disappears from the action, which takes the form

SB =

∫

W 2

[
e++ ∧ Ῡ−

ΣdΥ−Σ − e−− ∧ Ῡ+
ΣdΥ+Σ

]
+

∫

W 2

d2ξLG . (3.18)

The local Lorentz symmetry SO(1, 1) of the action (3.18) as well as its two U(1) gauge

symmetries, one acting on Υ+Σ and Ῡ+
Σ and the other on Υ−Σ and Ῡ−

Σ , hold true due

to the constraints (3.16), (3.17) imposed on Υ− and Υ+. The action also has an overall

scaling gauge symmetry under Υ+,− 7→ eγΥ+,−, e±± 7→ e−2γe±±.

Now, following with this action the same steps as in section 3.1 , but in reverse order,

we recover a counterpart of (3.1) for the open twistor string action of eq. (2.14). Starting

from eq. (3.18) and solving the constraints (3.16), (3.17) by

µ−α̇ = xα̇α
(l)Lλ−

α := (xα̇α
(l) + iθ(l)

α
i θ̄α̇i

(l))λ
−
α ,

η−i = θ(l)
α
i λ−

α ; (3.19)

µ+α̇ = xα̇α
(r)Lλ+

α := (xα̇α
(r) + iθ(r)

α
i θ̄α̇i

(r))λ
+
α ,

η+
i = θ(r)

α
i λ+

α , (3.20)

one finds that the action SB of (3.18) is equivalent to

S =

∫

W 2

(e++ ∧ Π̂α̇α
(l) λ̄−

α̇ λ−
α − e−− ∧ Π̂α̇α

(r)λ̄
+
α̇ λ+

α )

+

∫

W 2

d2ξLG , (3.21)

5Notice that the open tensionless string in a generalized D = 4, N = 1 superspace enlarged by the

tensorial central charge coordinates ymn = −ynm was considered in [39].
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where

Πα̇α
(l) := dxα̇α

(l) − idθ(l)
α
i θ̄α̇i

(l) + iθ(l)
α
i dθ̄α̇i

(l) ,

Πα̇α
(r) := dxα̇α

(r) − idθ(r)
α
i θ̄α̇i

(r) + iθ(r)
α
i dθ̄α̇i

(r) . (3.22)

The action (3.21) contains two sets of coordinate functions, xαα̇
(l) , θ(l)

α
i , θ̄α̇i

(l) and xαα̇
(r), θ(r)

α
i ,

θ̄α̇i
(r), corresponding to two copies of D = 4, N = 4 superspace. Looking at the dynamics

implied by (3.21) it is seen that one set (xαα̇
(l) , θ(l)

α
i , θ̄α̇i

(l)) contains the left- and the other

(xαα̇
(r), θ(r)

α
i , θ̄α̇i

(r)) the right-moving fields, as indicated by the subindexes l, r.

We note in passing that such a double set of variables, but for N = 1, was used in [23]

to write an equivalent form of the N = 2 Green-Schwarz superstring action.

In the above discussion on the open twistor string, the doubling of the superspace

variables seems to play an auxiliary rôle as far as the YM vertex operators are associ-

ated with the boundary of the open string. The two sets of D = 4 N = 4 superspace

coordinate functions are needed to formulate the action in its spacetime form. The bound-

ary conditions (2.15) identify these coordinate functions modulo the (two copies of the)

κ-symmetry,

δκxα̇α
(l) = iδκθ(l)

α
i θ̄α̇i

(l) − iθ(l)
α
i δκθ̄α̇i

(l) ,

δκθ(l)
α
i = κ+

i λ−α , δκθ̄α̇i
(l) = κ̄+iλ̄−α̇ , (3.23)

δκxα̇α
(r) = iδκθ(r)

α
i θ̄α̇i

(r) − iθ(r)
α
i δκθ̄α̇i

(r) ,

δκθ(r)
α
i = κ−

i λ+α , δκθ̄α̇i
(r) = κ̄−iλ̄+α̇ , (3.24)

δκλ±α = δκλ̄±α̇ = δκe±± = 0 ,

and reparametrization symmetry transformations characteristic of the action (3.21).

4. On a possible parent tensionful superstring action for the twistor string

The null-superstring mass spectrum is known to be continuous [24, 22]. To obtain a discrete

spectrum, one should rather quantize the tensionless limit of a tensionful superstring.

These two zero tension superstrings are different in the set of variables used to build

the quantum theory. The null-superstring [24, 22] is quantized in terms of particle-like

variables, momentum and coordinates, while the quantum theory of the tensionless limit of

a superstring (often called just ‘tensionless superstring’) is formulated in terms of stringy

oscillators [26, 27, 41].

The calculations of the tree YM diagrams from the twistor string models [1, 12, 14], in

particular the choice of the vertex operators and the discussions on contributions to con-

formal anomaly, clearly use stringy variables rather than the particle-like null-superstring

ones and, thus, deal with a tensionless limit of some tensionful superstring rather than

with the intrinsically tensionless superstring i.e. null-superstring.

Thus it is natural to ask: which is the tensionful superstring action the tensionless limit

of which leads to the twistor string one? Such a problem was posed by Siegel [14], who

proposed the tensionful QCD string [28] as the bosonic part of such a parent superstring;
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fermions were not considered. In our present perspective, the above problem corresponds to

looking for the tensionful parent of the N = 4 version of the N = 1 tensionless superstring

action of [21, 22], eq. (3.15).

4.1 From tensionful D = 4 superstrings to N = 1, 2 counterparts of the super-

twistor string

The N=1 and N=2 versions of the null-superstring superspace action (3.15) can be ob-

tained as tensionless limits of the action of the Lorentz harmonics formulation [42] of the

N = 1 and N = 2 D = 4 Green-Schwarz superstrings

S =
1

4πα′

∫

W 2

[e++ ∧ Πα̇αv̄−α̇ v−α − e−− ∧ Πα̇αv̄+
α̇ v+

α − e++ ∧ e−−] −
1

4πα′

∫

W 2

B̂2 , (4.1)

where the bosonic spinors v−α and v+
α are relatively normalized by the ‘harmonicity condi-

tions’ (3.14), vα−v+
α = 1, and the last contribution in (4.1) is the Wess-Zumino term. This

is defined by the pull-back to W 2 of the two-form gauge potential B2 on flat superspace

and that provides the superspace generalization of the NS-NS or Kalb-Ramond field. This

two-form obeys the constraints6

H3 = dB2 = −2iΠa ∧ (dθ1 ∧ σadθ̄1 − dθ1 ∧ σadθ̄2) for N = 2 , (4.2)

H3 = dB2 = −2iΠa ∧ dθ ∧ σadθ̄ for N = 1 . (4.3)

The N = 1, 2 versions of the null-superstring action (3.15) can be obtained from (4.1)

by taking the tensionless limit α′ 7→ ∞ while keeping e++

α′ finite. Thus, before setting α′ 7→

∞ we redefine e++ → 4πα′e++, e−− → e−−/(4πα′). In this way, taking the tensionless limit

α′ 7→ ∞ one finds that the Wess-Zumino term and the ‘cosmological’ e++∧e−− term vanish

as 1/α′ 7→ 0. Similarly, the second term in (4.1) also goes to zero as 1/(α′)2 7→ 0, while

after the redefinition the first term becomes α′ independent and produces the tensionless

superstring action (3.15).

The problem with the N=4 tensionless superstring, which is equivalent to the twistor

string model [1, 12, 14], is that the corresponding N = 4 tensionful superstring, which would

be the counterpart of the N = 1, 2 actions (4.1) possessing a 2N parametric κ-symmetry,

is not known. This problem may be traced to the mismatch between the on-shell bosonic

and fermionic degrees of freedom of such a hypothetical N = 4 superstring constructed

from x̂a, θ̂α1, . . ., θ̂α4 and their complex conjugates (4 − 2 = 2 bosonic and 1/2(4 × 2) = 4

fermionic degrees of freedom). Geometrically, the problem is reflected by the absence of

the D = 4, N = 4 counterpart of the CE three-cocycles H3 = dB2 [43] that do exist in

D = 4, N = 1, 2 superspaces. Such a closed three form would be needed to construct the

Wess-Zumino term, a necessary ingredient of a κ-symmetric tensionful superstring action

in the superspace of the usual type (see [44] for a superstring action without Wess-Zumino

term in an enlarged tensorial superspace and [45] for a discussion of WZ terms and extended

superspaces).

6The expression of H3 shows that it is a Chevalley-Eilenberg (CE) three-cocycle for the superspace

algebra cohomology [43].
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4.2 From D = 10 N = 1 superstring to the supertwistor string

Such a three-cocycle does exist for the D = 10 N = 1 supersymmetry algebra, allowing for

the existence of the heterotic superstring [46]. It is given by

D = 10 , N = 1 : H3 = dB2 = −2iΠa ∧ dΘ ∧ ΣadΘ . (4.4)

The N = 1 D = 10 superstring contains (as the D=4, N=4 one) 16 fermionic Majorana-

Weyl coordinate functions

Θα =

(
θα
i

θ̄i
α̇

)
≡

(
θα
i

(θα i)
∗

)
, α = 1, . . . , 16 , α = 1, 2 , α̇ = 1, 2 , i = 1, . . . 4 ,

(4.5)

and ten bosonic coordinate functions Xa which can be split as

Xa = (xa , XI) , a = 0, 1 . . . , 10 , a = 0, 1, 2, 3 , I = 1, . . . , 6 . (4.6)

The D = 10 (16 × 16) sigma-matrices can be chosen in the form

Σ
a
αβ = (Σa

αβ ,ΣI
αβ) , Σa

αβ =

(
0 σa

αβ̇
δi
j

σaα̇βδj
i 0

)
, ΣI

αβ =

(
εαβ ρ̃Iij 0

0 −ε
α̇β̇

ρI
ij

)
, (4.7)

where ρI
ij and ρ̃Iij are the SO(6) Clebsch-Gordan coefficients ρI

ij ρ̃
Ii′j′ = −4δ

[i′

i δ
j′]
j (see

e.g. [47]).

The Lorentz harmonics formulation of the D = 10, N = 1 superstring is characterized

by the action [42, 48] which can be written in the form

S =
1

4πα′

∫

W 2

[e++ ∧ Πaua
−− − e−− ∧ Πaua

++ − e++ ∧ e−−] −
1

4πα′

∫

W 2

B̂2 (4.8)

involving the worldvolume fields in the pull-back of the NS-NS two form B2 (4.4) to W 2

and two auxiliary lightlike vector fields, u++
a , u−−

a , the counterparts of v−α v̄−α̇ and v+
α v̄+

α̇

in D=4 (4.1).7 These ‘vector Lorentz harmonics’ [50] may be considered as composites

of the D = 10 spinorial harmonics or spinor moving frame variables [51, 42, 48]. Here

we only notice their lightlike character and the relative normalization (cf. (3.14)) of the

ten-vectors ua
±±,

ua−−ua
−− = 0 , ua++ua

++ = 0 , ua−−ua
++ = 2 . (4.9)

Taking the α′ 7→ ∞ limit in eq. (4.8) after the e++ → 4πα′e++, e−− → e−−/(4πα′)

redefinition, as for the D = 4, N = 1, 2 superstring action above, we arrive at the ten-

dimensional tensionless superstring action

S =

∫

W 2

e
++

∧ Πau
−−

a , u−−
a ua−− = 0 , (4.10)

7One could also write another twistor-like action for D = 10 superstrings by using two unconstrained

bosonic spinors [49]. In our notation, it reads 1
4πα′

R

W2 [e++
∧ Πa(λ−Σaλ−) − e−−

∧ Πa(λ+Σaλ+) − e++
∧

e−−(λ−Σaλ−)(λ+Σaλ+)]− 1
4πα′

R

W2 B̂2 . Then, and in contrast with (4.8), the κ-symmetry of that action

would not be irreducible.
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which involves only u−−
a , one of the two lightlike ten-dimensional vectors (4.9). A dimen-

sional reduction of such an action can be done in such a manner that the D = 4, N = 4

null superstring appears. A formal way to achieve this is to consider the action (4.10) in a

frame where the above lightlike vector u−−
a only has nonvanishing components in the four

D = 4 Minkowski spacetime directions,

u−−
a = δ b

a u−−
b = (u−−

a , 0, . . . , 0) , u−−
a ua−− = 0 ,

a = 0, . . . , 9 , a = 0, . . . , 3 . (4.11)

4.3 Tensorial (enlarged) superspace versus standard ten dimensional super-

space.

The above shows that the twistor string can be obtained by taking the tensionless limit

of the D = 10 superstring action (4.8) and then performing a dimensional reduction down

to D = 4. By considering the D = 10 Green-Schwarz superstring action as a tensionful

parent of the D = 4 twistor string, we have allowed ourselves to enlarge D = 4 superspace

by six additional bosonic coordinates. However, it is not clear at present whether this

enlargement is unique, and this allows us to discuss another possible higher-dimensional

superstring parent for the twistor string.

Indeed, even if we restrict ourselves to just six additional bosonic coordinates as above,

these do not need being the components of the SO(6) vector XI implied in the enlargement

of D = 4 to the standard D = 10 superspace. We may consider instead a tensorial

superspace, in which the additional six bosonic coordinates appear as the components of

an antisymmetric tensor, Y µν = −Y νµ. The proper incorporation of a SO(6) vector into

the action leads naturally to an enhancement of the symmetry from SO(1, 3) ⊗ SO(6) to

SO(1, 9). This implies an embedding of our tensionless string (classically equivalent to

the twistor string) into a manifestly SO(1, 9) (actually, D = 10 super-Poincaré) invariant

theory. Similarly, the proper enlargement of the target superspace by the antisymmetric

tensor coordinates Y µν , which could be split into the symmetric spin-tensor Xαβ = Xβα

and its complex conjugate (in the case of Minkowski signature) Xα̇β̇ = X β̇α̇ = (Xαβ)∗,

results in an enlargement of the automorphism symmetry to GL(4, R). The spin-tensorial

representation allows to collect all ten coordinates in a manifestly symmetric 4× 4 matrix,

X
α′β′

:=

(
Xαβ (X β̇α)T

Xα̇β Xα̇β̇

)
, α′, β′ = 1, . . . , n = 4 (4.12)

(i.e. α′ = 1, 2, 1̇, 2̇). Such a tensorial space was proposed by Fronsdal [52] to describe higher

spin fields. A dynamical realization of such a theory was found later [53], quantizing a

generalized superparticle model [54] which has the properties of a BPS preon [55] (see [44,

56, 57] for further discussion).

The above analysis suggests relating our D = 4, N = 4 null-superstring (3.15) to a

string model in a N=4 extended tensorial superspace Σ̃(10|4N) (= Σ̃(n(n+1)
2

|nN) for n = 4,

see [44])

(Xα′β′
, Θα′i) := (X β̇β,Xαβ ,Xα̇β̇; θα

i , θ̄α̇i) . (4.13)
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The D = 4, N = 4 null superstring action (3.15) providing a spacetime reformulation of

the Berkovits-Siegel twistor string action (3.1) can be obtained as the w 7→ 0 limit of the

action (omitting the LG contribution)

S(w) =

∫

W 2

e++ ∧
(
Πα̇αλαλ̄α̇ +

w

2
Παβλαλβ +

w̄

2
Πα̇β̇λ̄α̇λ̄

β̇

)
, (4.14)

Πα̇α = dxα̇α − idθα
i θ

α̇i
+ iθα

i dθ
α̇i

,

Παβ = dxαβ − 2idθ
(α
i θ

β)
i ,

Πα̇β̇ = dxα̇β̇ − 2idθ
(α̇i

θ
β̇)i

,

which describes a tensionless superstring in N = 4 extended tensorial superspace Σ̃(10|4N)

(for w = 1 this action was first considered in [40]).

The action (4.14), is an extended object counterpart of the superparticle action [53] in

tensorial superspace. It may be related with the tensionless limit of tensionful superstring

models in enlarged superspace (higher spin extensions of the superstring) considered in [44].

In particular, a direct tensionless limit of the generalized superstring model [44] would lead

to the w = 1 representative of the family (4.14) of tensionless actions. This w = 1 action

can be rewritten in the form

S(w = 1) = SSp(4|4) =
1

2

∫

W 2

e++ ∧ Πα′β′
Λα′Λβ′ , (4.15)

Πα′β′
= dX

α′β′
− 2idΘ(α′|iΘ|β′)i ,

Θα′i := (θα
i , θ̄α̇i ) , Λα′ := (λα, λα̇)

which makes its GL(4, R) symmetry manifest. It possesses a hidden OSp(N |8) symmetry

which becomes manifest in its orthosymplectic twistor presentation [58]

S
Σ(10|16)

=
1

2

∫
e++ ∧ (dMα′

Λα′ −Mα′
dΛα′ − 2idχi χi) ,

Mα′
= X

α′β′
Λβ′ − iΘα′iΘβ′iΛβ′ ,

χi = Θβ′iΛβ′ (4.16)

(see [54, 53] for the superparticle case and the discussion in [44]).

In the purely bosonic limit the simple redefinition X̂αβ 7→ 1/w X̂αβ , X̂α̇β̇ 7→ 1/w̄ X̂α̇β̇

maps any w 6= 0 model to the w = 1 one. This implies that the symmetry of any of

the S(w 6= 0) actions (4.14) includes the bosonic Sp(8) group. However, the presence of

fermions breaks this identification and makes the w = 1 dynamical system (4.15) special

as it possesses 12 local fermionic κ-symmetries while all other w 6= 0, 1 models possess

only 8 κ-symmetries. Another face of the same fact is that the w = 1 model (4.15)

may be written in terms of OSp(N |8) = OSp(4|8) real supertwistors (µα′
, λα′ , χi) with

real fermionic χi = (χi)
∗ i = 1, . . . , 4, eqs. (4.16), while the w 6= 0, 1 models require

OSp(2N |8) = OSp(8|8) supertwistors (µα′
, λα′ , ηi) with complex fermionic components
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ηi 6= (ηi)
∗ (see [53] for the superparticle case),

S(w) =
1

2

∫
e++ ∧

(
dµ̄αλα − dλαµ̄α + λ̄α̇dµα̇ − µα̇dλ̄α̇

−2idηi(η̄
i + wηi) + 2i(ηi + w̄η̄i)dη̄i

)
, (4.17)

where

µ̄α = X β̇αλ̄
β̇

+ wXαβλβ − iθα
i

(
θ̄iλ̄ + wθiλ

)
,

µα̇ = Xα̇βλβ + w̄Xα̇β̇λ̄β̇ − iθ̄α̇i
(
θiλ + w̄θ̄iλ̄

)
,

ηi = θiλ = θα
i λα , η̄i = θ̄iλ̄ = θ̄α̇iλ̄α̇ . (4.18)

The w = 0 member of the above S(ω) family is equivalent to the twistor string action (2.1),

S(w = 0) = SS =

∫

W 2

e++ ∧ Πα̇αλαλ̄α̇ . (4.19)

To see this, in addition to observing the coincidence of eqs. (3.1) and (4.19), one should

take into account that for w = 0 eqs. (4.18) become the incidence equations (3.10) and

their c.c.; these, in turn, provide the general solution of the constraints (2.10). For the

general w 6= 0 element of the family of dynamical systems (4.17), eqs. (4.18) do not imply

any constraints. This corresponds to the fact that the N = 1 superparticle counterpart

of the action (4.17) describes an infinite tower of massless fields of all possible helicities

(‘free higher spin theory’). The significance of the fact that the twistor string enters

as a singular element of the one-complex-parameter family of tensionless superstrings in

tensorial superspace (if any) is still to be understood. Let us finish by noticing that there

is an enlargement of the internal symmetry group of the w = 0 action (4.17) from SO(4)

to SU(4).

5. Final remarks and discussion

By using a twistor transform similar to the one originally proposed for the superparticle [19],

we have seen that the twistor string model is classically equivalent to a supersymmetric

extended object in a D = 4, N = 4 superspace. For Siegel’s closed string version of

the Berkovits model, this action, having 8 κ-symmetries and 16 supersymmetries, coin-

cides with the N = 4 extension of the tensionless superstring action [21]. The Berkovits

open-string action [12] describes a counterpart of the tensionless superstring in the su-

perspace isomorphic to a direct product of two copies of D = 4, N = 4; the two copies

of the coordinate functions turn out to be identified on the open string boundary mod-

ulo gauge symmetries, the set of which includes two copies of 8-parametric κ-symmetry,

eqs. (3.23), (3.24).

Null (or intrinsically tensionless) superstrings maintain their conformal invariance by

having a continuous spectrum [24, 21]. This implies that the prescription of writing the

gauge field amplitudes from [14] assumes dealing with the tensionless limit of some tension-

ful superstring rather than with the null-superstring itself. This was actually noticed in [14]
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where a possible relation of the twistor superstring with a model for a ‘QCD string’ [28]

was discussed. However, the consideration of the tensionful prototype of the twistor string

in [14] was purely bosonic.

It is plausible to assume that a parent tensionful superstring should have a smooth

tensionless superstring limit in the sense that both tensionful and tensionless superstrings

should present the same number of κ-symmetries. Of course, as it is known, the zero

tension limit is special in many respects. In particular the huge enhancement of the global

symmetry in this limit was already noticed in [25]. However, one may expect a nonsingular

limit in the sense of preserving the number of degrees of freedom of the dynamical system.

This seems to be the case for the tensionless limit of the standard (Nambu-Goto or) Green-

Schwarz string, a limit believed to be described by a massless higher spin theory (an infinite

tower of massless higher spin fields); see [27, 41] for a discussion. Let us stress, nevertheless,

that the tensionless limit of the usual Green-Schwarz superstring leading to the twistor

string is expected to be different. Such a zero tension limit could accompanied by some

other transformations of the variables in the model. In any case, since Berkovits and

Siegel’s path integral exponents contain the twistor string action and we have seen here

that this action is equivalent to the tensionless string one, our results suggest that their

prescription to obtain the N = 4 SYM diagrams from the twistor string [12, 14] provides

a third way of quantizing of the tensionless string, alternative to the two of [26, 27, 21,

22].

As we discussed in this paper, the D = 10 N = 1 superstring can be considered as a

tensionful candidate leading to the D = 4 twistor string upon dimensional reduction. At

the present level of understanding, the way from D = 10 N = 1 tensionful Green-Schwarz

superstring to the D = 4 N = 1 tensionless superstring action (3.15) (equivalent, as we

have shown here, to Siegel’s twistor string action (2.1)), consists in taking first a tensionless

limit then performing a dimensional reduction of the D = 10 tensionless superstring down

to D = 4. For such a construction the standard D = 10 N = 1 superspace Σ(10|16)

is not a priori a better starting point than e.g., D = 4 N = 4 tensorial superspace

Σ̃(10|16), the ten bosonic coordinates of which include the spacetime four-vector xµ plus six

tensorial coordinates yµν . These can be treated as spin degrees of freedom [52, 53] or as

conjugated [45, 54, 44] to the topological charges of superbranes [59].

This is a good place to discuss the possible higher dimensional generalizations of the

supertwistor string (a problem also posed in [16] in the context of two-time physics). The

generalization to tensorial superspace Σ̃(10|16) can be associated with any of the tensionless

superstring actions (4.14) with w 6= 0. The pure twistor form of the action similar to the

Berkovits-Siegel one for a supertwistor string is provided by eq. (4.17). A possible drawback

of this action is the lack of a complex structure and hence of a U(1) symmetry, which seems

relevant in applying the supertwistor string to Yang-Mills theory [1, 12, 14], although one

cannot exclude the (rather exotic) possibility of replacing this U(1) symmetry of the w = 0

action by some other symmetry of the w 6= 0 models. The same lack of complex structure

results in a replacement of the SU(2, 2|4) superconformal symmetry of the w = 0 action

by the OSp(8|8) generalized conformal symmetry of the S(w 6= 0) models (4.17) (OSp(4|8)

for w = 1).

– 17 –
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The generalization of the twistor superstring to the more conventional D = 10 N = 1

superspace is actually provided by the tensionless superstring action (4.10). To see this one

needs, following [42, 48], to ‘extract the square root’ of the light-like vector u−−
a (vector

Lorentz harmonics) by introducing a set of 8 bosonic spinors vα
−
q (basis of the spinor

moving frame or spinor Lorentz harmonics) highly constrained by

2vα
−

q vβ
−

q = u
−−

a Σ
a
αβ , v

−

pΣ̃av
−

q = δpqu
−−

a (5.1)

α,β=1,...,16 , p,q=1,...,8

(ΣaΣ̃b + ΣbΣ̃a = 2ηab and Σa was defined in (4.7)). Then, the action (4.10) reads

S =
1

8

∫

W 2

e++ ∧ Πa Σ̃
αβ
a vα

−

qvβ
−

q , (5.2)

Πa = dXa − idΘΣaθ ,

and it is a clear counterpart of (3.15) but in terms of constrained spinors vβ
−
q , eq. (5.1). It

can be shown that these spinorial Lorentz harmonics parameterize the celestial sphere S8

represented as the Lorentz group coset [51]

{v −
αp} =

Spin(1,D − 1)

[Spin(1, 1) ⊗ Spin(8)]⊂× K8
= S

8 , (5.3)

K8 being an abelian subalgebra. The D = 10 counterpart of the original pure supertwistor

form (2.1) of the supertwistor string action can be obtained by presenting the action (5.2)

in the form

S =

∫

W 2

e++ ∧ (dµ−α
q vα

−
q − µ−α

q dvα
−
q − idχ−

q χ−
q ) , (5.4)

where the D = 10 counterpart of the Penrose incidence relation reads

µ−α
q = XaΣ̃

αβ
a vβ

−
q −

i

2
Θα Θv−q , χ−

q = Θαvα
−
q . (5.5)

Due to the basic constraints (5.1), eq. (5.5) results in µ
−α
q vα

−
p = Xau−−

a δpq + i
2χ−

q χ−
p . This

implies that eq. (5.5), with vα
−
p constrained by (5.1), provides the general solution of the

constraints

µ
−α

[q vα
−
p] −

i

2
χ−

q χ−
p = 0 ,

µ
−α

(q vα
−
p) −

1

8
δqpµ

−α
p′ vα

−
p′ = 0 , (5.6)

which play the role of the D = 4 constraint (2.10). More details on the twistor-harmonic

formalism in D = 10 and 11 will be presented in elsewhere.

Let us notice that the necessity of using constrained spinors to describe the higher

dimensional generalizations of the twistors was recently noticed [60] in the context of a two-

time physics generalization of the Penrose incidence relation, as well as earlier in [42, 48],

in relation with the generalization vα
−
q vβ

−
q ∝ paΣ

a
αβ , paδpq ∝ v−p Σ̃av

−
q (cf. (5.1)) of

the D = 4 Cartan-Penrose representation of a lightlike momentum, paσ
a
αα̇ = λαλ̄α̇, the
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other essential ingredient of the Penrose twistor approach.8 The twistor transform of the

tensionful D = 4, N = 1, 2 superstring actions (4.1) has been presented recently [61] (on

the surface of embedding equations Παα̇v−α v̄+
α̇ = 0 and Παα̇v−α v̄+

α̇ = 0).

To conclude, we mention that we did not consider in the present context the interesting

problem of the possible stringy origin of the Yang-Mills current part
∫

LG, eq. (2.12), in the

supertwistor string action (2.1). In the light of the discussion in section 4, it is tempting

to speculate that (2.12) might originate from the heterotic fermion contribution to the

(tensionful) D = 10 N = 1 heterotic string action. The main difficulty for such a scenario

seems to be the fact that the chirality of the heterotic fermions is opposite to that of the

fermionic coordinate function Θα, while the current generating fermions in (2.12) have the

same worldsheet chirality [32] as the twistors in (2.1) and the coordinate functions θα, θ̄α̇

in (3.1).
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